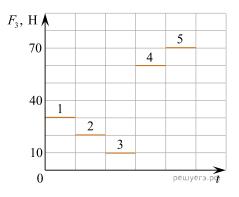
Централизованное тестирование по физике, 2011

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

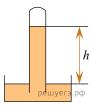
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Физическим явлением является:


2. Установите соответствие между физическими величинами и учёными-физиками, в честь которых названы единицы этих величин.

	А. ИндуктивностьБ. РаботаВ. Частота	1) Генри 2) Джоуль 3) Герц	
1) A1 Б2 B3	,	3) А2 Б1 В3	4) A2 Б3 В1
5) A3 G2 B3			

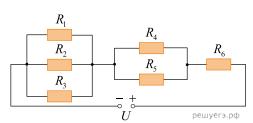
3. По параллельным участкам соседних железнодорожных путей в одном направлении равномерно двигались два поезда: пассажирский и товарный. Модуль скорости пассажирского поезда $\upsilon_1=44~\frac{\mathrm{KM}}{\mathrm{q}}$, товарного – $\upsilon_2=80~\frac{\mathrm{KM}}{\mathrm{q}}$. Если длина товарного поезда $L=0,60~\mathrm{km}$, то пассажир, сидящий у окна в вагоне пассажирского поезда, заметил, что он проехал мимо товарного поезда за промежуток времени Δt , равный:


- 1) 17 c 2) 27 c 3) 38 c 4) 49 c 5) 60 c
- **4.** Тело, брошенное вертикально вниз с некоторой высоты, за последнюю секунду движения прошло путь $s=55,0\,$ м. Если модуль начальной скорости тела $\upsilon_0=10,0\,\frac{\rm M}{c},$ то высота h равна:
 - 1) 180 m 2) 175 m 3) 160 m 4) 155 m 5) 150 m

5. Тело двигалось в пространстве под действием трёх постоянных по направлению сил $\vec{F}_1, \ \vec{F}_2, \ \vec{F}_3$. Модуль первой силы $F_1=15$ H, второй — $F_2=40$ H. Модуль третьей силы F_3 на разных участках пути изменялся со временем так, как показано на графике. Если известно, что только на одном участке тело двигалось равномерно, то на графике этот участок обозначен цифрой:

1) 1 2) 2 3) 3 4) 4 5) 5

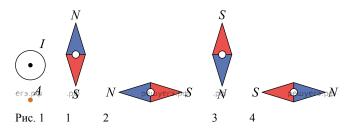
6. Запаянную с одного конца трубку наполнили глицерином ($\rho = 1260 \; \frac{{\rm K}\Gamma}{{\rm M}^3}$), а затем погрузили открытым концом в широкий сосуд с глицерином (см.рис.). Если высота столба глицерина h = 7,90 м, то атмосферное давление p равно:



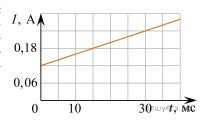
- 1) 98,0 κΠa
- 2) 98,8 κΠa 3) 99,5 kΠa 5) 102 κΠa
- 4) 101 κΠa
- 7. Если абсолютная температура тела изменилась на $\Delta T = 50$ K, то изменение его температуры Δt по шкале Цельсия равно:

 - 1) $\frac{50}{273}$ °C 2) $\frac{273}{50}$ °C 3) 50 °C 4) 223 °C
- 5) 323 °C
- 8. В результате изотермического процесса объем идеального газа увеличился от $V_1 = 5,0$ л до $V_2 = 6,0$ л. Если начальное давление газа $p_1 = 0,18$ МПа, то конечное давление p_2 газа равно:
 - 1) 0,11 MΠa
- 2) 0,13 MΠa 5) 0,22 MΠa
 - 3) 0,15 MΠa
- 9. В некотором процессе над термодинамической системой внешние силы совершили работу $A = 25 \, \text{Дж}$, при этом внутренняя энергия системы увеличилась на $\Delta U = 40$ Дж. Количество теплоты Q, полученное системой, равно:
- 2) 10 Дж
- 3) 15 Дж
- 4) 25 Дж
- 5) 35 Дж
- 10. На рисунке приведено условное обозначение:

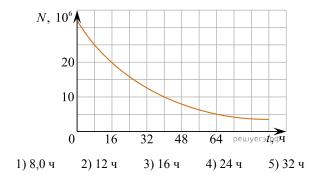
- 1) колебательного контура
- 2) конденсатора
- 3) гальванического элемента
- 4) катушки индуктивности 5) резистора
- 11. В электрической цепи, схема которой приведена на рисунке, сопротивления резисторов $R_1 = 50.0$ Ом, $R_2 = 75.0$ Ом, $R_3 = 150$ Ом, $R_4 = 180$ Ом, $R_5 = 150$ Ом, $R_6 = 150$ Ом, $R_8 = 150$ 20,0 Ом, R_6 = 7,00 Ом. Если напряжение на клеммах источника тока U = 18 В, то на резисторе R_2 сила тока I_2 равна:


- 1) 120 mA
- 2) 135 мA
- 3) 150 mA
- 4) 185 MA
- 5) 240 mA
- **12.** Три точечных заряда $q_1 = 32$ нКл, $q_2 = 45$ нКл и $q_3 = -11$ нКл находятся в вакууме и расположены вдоль одной прямой, как показано на рисунке. Если расстояние a = 7.6 см, то потенциальная энер-

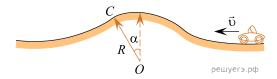
гия W электростатического взаимодействия системы этих зарядов равна:


- 1) 50 мкДж
- 2) 61 мкДж 5) 91 мкДж
 - 3) 75 мкДж
- 4) 82 мкДж

13. Прямой проводник с током I расположен перпендикулярно плоскости рисунка (см. рис. 1). В точку A поместили небольшую магнитную стрелку, которая может поворачиваться вокруг вертикальной оси, перпендикулярной плоскости рисунка. Как расположится стрелка? Правильный ответ на рисунке 2 обозначен цифрой:


5) В точке A магнитное поле не создается, ориентация стрелки будет произвольная

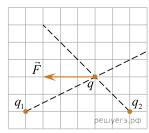
- 1) 1 2) 2 3)3 4) 4 5) 5
- 14. На рисунке изображён график зависимости силы тока I в катушке индуктивности от времени t. Если индуктивность катушки L = 93 мГн, то энергия W магнитного поля катушки в момент времени t = 15 мс была равна:



- 1) 1,5 мДж 2) 2,7 мДж 3) 3,2 мДж 4) 4,2 мДж 5) 6,9 мДж
- 15. Поплавок, качаясь на волнах, распространяющихся со скоростью, модуль которой v=1,8 $\frac{\mathrm{M}}{\mathrm{C}}$. Если расстояние между соседними гребнями волн l=2,0 м, то частота ν колебаний поплавка равна:
 - 1) $0.30 c^{-1}$ 2) $0.45 c^{-1}$
- 3) 0.60 c^{-1} 4) 0.75 c^{-1}
 - $5) 0.90 c^{-1}$
- **16.** На дифракционную решётку, период которой d = 6.5 мкм, падает нормально параллельный пучок монохроматического света. Если угол отклонения излучения в спектре пятого порядка $\theta = 30^{\circ}$, то длина волны λ световой волны равна:
 - 1) 550 HM
- 2) 600 нм
- 3) 650 нм
- 4) 700 нм
- 5) 750 нм
- 17. Атом водорода при переходе с шестого энергетического уровня ($E_6 = -6,04\cdot 10^{-20}~{
 m Дж})$ на четвертый (${
 m E}_4 = -1,36\cdot 10^{-19}~{
 m Дж})$ испускает фотон, модуль импульса p которого равен:
 - 1) $7.03 \cdot 10^{-27} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$ 2) $1.61 \cdot 10^{-27} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$ 3) $6.03 \cdot 10^{-28} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$ 4) $2.52 \cdot 10^{-28} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$ 5) $8.83 \cdot 10^{-29} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$

18. На рисунке изображён график зависимости числа N нераспавшихся ядер некоторого радиоактивного изотопа от времени t. Период полураспада $T_{1/2}$ этого изотопа равен:

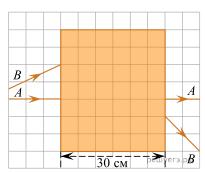
- 19. Легковой автомобиль движется по шоссе со скоростью, модуль которой $\upsilon=30~\frac{\rm M}{\rm c}$. Внезапно на дорогу выскочил лось. Если время реакции водителя $t=0,60~\rm c$, а модуль ускорения автомобиля при торможении $\rm a=6,0~\frac{\rm M}{\rm c^2}$, то остановочный путь s (с момента возникновения препятствия до полной остановки) равен ... м.
- **20.** С помощью подъёмного механизма груз равноускоренно поднимают вертикально вверх с поверхности Земли. Через промежуток времени $\Delta t=10$ с после начала подъёма груз находился на высоте h=50 м, продолжая движение. Если сила тяги подъёмного механизма к этому моменту времени совершила работу A=44 кДж, то масса m груза равна ... кг.
- **21.** Тело массой m=0,25 кг свободно падает без начальной скорости с высоты H. Если на высоте h=20 м потенциальная энергия тела по сравнению с первоначальной уменьшилась на $_{\Pi}=65$ Дж, то высота H равна ... м.
- **22.** Автомобиль массой m=1 т движется по дороге со скоростью, модуль которой $\upsilon=30\frac{\mathrm{M}}{\mathrm{C}}$. Профиль дороги показан на рисунке. В точке C радиус кривизны профиля R=0,34 км. Если направление на точку C из центра кривизны составляет с вертикалью угол $\alpha=30,0^o$, то модуль силы F давления автомобиля на дорогу равен ... кH.


- **23.** В баллоне находится смесь газов: неон ($M_1=20~\frac{\Gamma}{\text{МОЛЬ}}$) и аргон ($M_2=40~\frac{\Gamma}{\text{МОЛЬ}}$). Если парциальное давление неона в три раза больше парциального давления аргона, то молярная масса M смеси равна ... $\frac{\Gamma}{\text{МОЛЬ}}$.
- **24.** Небольшой пузырёк воздуха медленно поднимается вверх со дна водоёма. На глубине h_1 = 97 м температура воды ($\rho=1,0\frac{\Gamma}{{
 m cM}^3}$) $t_1=7,0^{\circ}{
 m C}$, а на глубине $h_2=1,0$ м температура воды $t_2=17^{\circ}{
 m C}$. Если атмосферное давление $p_0=1,0\cdot 10^5$ Па, то отношение модуля выталкивающей силы F_2 , действующей на пузырек на глубине h_2 , к модулю выталкивающей силы F_1 , действующей на пузырек на глубине h_1 , равно ...

25. К открытому калориметру с водой
$$\left(L=2,26\ \frac{{
m M} \ {
m Д}_{
m K\Gamma}}{{
m K}\Gamma}\right)$$
 ежесекундно подводили количество тепло-

кундно подводили количество теплоты Q = 93 Дж. На рисунке представлена зависимость температуры t воды от времени τ . Начальная масса m воды в калориметре равна ... Γ .

26. На точечный заряд q, находящийся в электростатическом поле, созданном зарядами q_1 и q_2 , действует сила \vec{F} (см.рис.). Если заряд $q_1=$ -48 нКл, то заряд q_2 равен ...нКл.



27. Зависимость силы тока I в нихромовом $\left(\mathbf{c}=460\frac{\mathcal{\Pi}_{\mathrm{K}\Gamma}}{\mathrm{K}\Gamma}\right)$ проводнике, масса которого m=30 г и сопротивление R=1,0 Ом, от времени t имеет вид $I=B\sqrt{Dt}$, где B=0,1 А, D=2,5 с $^{-1}$. Если потери энергии в окружающую среду отсутствуют, то через промежуток времени $\Delta t=2,0$ мин после замыкания цепи изменение абсолютной температуры ΔT проводника равно ... К.

28. Две частицы массами $m_1=m_2=0,400\cdot 10^{-12}$ кг, заряды которых $q_1=q_2=1,00\cdot 10^{-10}$ Кл, движутся в вакууме в однородном магнитном поле, индукция B которого перпендикулярна их скоростям. Расстояние l=100 см между частицами остаётся постоянным. Модули скоростей частиц $\upsilon_1=\upsilon_2=15,0$ $\frac{\rm M}{c}$, а их направления противоположны в любой момент времени. Если пренебречь влиянием магнитного поля, создаваемого частицами, то модуль магнитной индукции B поля равен ... мТл.

29. В идеальном LC-контуре, состоящем из катушки индуктивностью L=80 мГн и конденсатора ёмкостью C=0,32 мкФ, происходят свободные электромагнитные колебания. Если максимальная сила тока в катушке $I_0=75$ мА, то максимальный заряд q_0 конденсатора равен ... мкКл.

30. На тонкую стеклянную линзу, находящуюся в воздухе за ширмой, падают два световых луча (см.рис.). Если луч A распространяется вдоль главной оптической оси линзы, а луч B — так, как показано на рисунке, то фокусное расстояние F линзы равно ... см.

